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I. Phys. A Math Gen. 28 (1995) 1909-1913. Printed in the UK 

On resolving the multiplicity of the branching rule 
GL(2L + 1, C) SO(2k + 1, C) 

Eric Y Leung 
Harrisburg Area Community College, Lebanon Campus, Lebanon PA 11042, USA 

Received 4 November 1994 

Abstract. We consider the multiplicity problem of the branckng mle CL(Zk+ 1 ,  C) & S 0 ( 2 k +  
1, C). Finite-dimensional irreducible representations of GL(2k t 1 ,  C) are realized as right 
translalions on subspaces of the holomorphic Hilbert (Bargmann) spaces of q x ( 2 k t  1) complex 
variables. Maps are exhibited which carry an irreducible representation of SO(2.k + I .  C) 
into these subspaces. An algebra of commuting operators is constructed. Eigenvalues and 
eigenvectors of certain of these operators can then be u x d  to resolve the multiplicity in the 
branching rule. 

1. Introduction 

One of the outstanding problems in the representation themy of Lie groups is the branching 
rule problem. Let G be a given Lie group and H a subgroup of G. Then it is well known that 
when we restrict a finite-dimensional irreducible representation of G to H ,  the representation 
can be decomposed as a direct sum of irreducible representations of H, provided that the 
restriction is completely reducible. The same irreducible representation of H may appear 
more than once in the decomposition. The branching rule G .J, H consists of finding the 
multiplicity of an irreducible representation of H that occurs in the decomposition. Many 
mathematicians and physicists have studied branching rules of different classical Lie groups 
(King 1975, Koike and Terada 1987, Whippman 1965, Zelobenko 1970). These branching 
rules only give the multiplicity of an irreducible representation of H and do not distinguish 
the equivalent irreducible representations. Leung (1994) found a canonical way of labelling 
the equivalent representations that occur in the branching rule GL(2k. C) J Sp(2k, C) and 
broke the multiplicity that appears in the branching rule expIicitIy. A similar method can 
be adapted to investigate the branching rule GL(2k + 1, C) .1 SO(2k + 1, C). In this 
addendum, we want to label the equivalent representations that appear in this branching 
rule and break the multiplicity~explicitly, assuming the multiplicity is known. The general 
set-up for our problem will be discussed in section 2. In section 3, using the theory of dual 
pairs (Howe 1985, Moshinsky and Quesne 1970), we will exhibit a new class of generalized 
commuting Casimir operators. The eigenvalues and eigenvectors of  certain elements in this 
algebra can then be used as labels to distinguish the equivalent representations that occur 
in the branching rule. 

2. The general set-up of the prublem 

Let G denote the general linear group GL(2R + 1, C) and H denote the odd complex 
orthogonal subgroup S 0 ( 2 k + l ,  C). In order to break the multiplicity of the branching rule, 
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we need to obtain concrete realizations of finite-dimensional irreducible representations of G 
and H. Recall that an irreducible representation of G is parametrized by an (UC + 1)-tuple 
of non-negative integers (m) = (ml, . . . , m2+1), which satisfies the dominant condition 
ml > ... > mx+l. Suppose (m) = (ml, ..., m ~ + l )  such that mg+l = ... =ma+] = 0 
for some 1 < q < 2k + 1. A concrete realization of a finite-dimensional irreducible 
representation of G, denoted by ( R t i ,  V g ) ) ,  can be constructed as shown in mink and Ton- 
That (1988). An irreducible homomorphically induced representation of H is parametrized 
by an k-tuple of non-negative integers (m) = (ml, . . . , mk), called the signature, such that 
ml > . . . > mw. A concrete realization of such an irreducible representation of H can be 
obtained as follows. Let Bk denote the lower triangular subgroup of GL(K, C). We define 
a holomorphic character 

5'"' : Bk -+ C* 

5")(b) = b z  . . . b z  Vb E Bw. 

Consider the following space: 

V,"' = f : CrXB+' + @If polynomial function, f(bX) = f'"(b)f(x) I 
=+I 

forbEBk,XECwx2+1and E (  ) = o , l < i < j < k  
p=I a zip azjp 

Let RF)  denote the representation of H on V,") by right translation, that is 
(R$')(h)f)(Z) = f ( Z h ) ,  h E H .  Then according to Ton-That, R,") is irreducible with 
signature (m) . 

If D9 denotes the group of all complex diagonal invertible matrices of order q,  and 
if (M) = (MI, . . . , Mq) is any q-tuple of non-negative integers, we define a holomorphic 
character 

: D9 + C' <"'(d) = d? . . . Mq Vdde Dq. 

A polynomial function p : C9xa+1 + C is said to transform covariantly with respect to 
< ( M )  if f ( d Z )  = < ( M ) ( d ) f ( Z ) ,  for all (d, Z )  belonging to D,, x C9xa+1. We shall denote 
this subspace by P(M). Now, suppose (m) = (ml, . . . , mq) is a q-tuple of integers such 
that ml 2 . . . 2 m9 2 0. Let L(") denote the representation of GL(q, C) on P(") defined 
by (L(")(g)p) (Z)  = p ( g - ' Z ) ,  g E GL(q,  C) and R") denote the representation of G on 
P(") by right translation. If we let Lij (respectively, R,) denote the infinitesimal operators 
of L(") (respectively, R")) corresponding to the standard basis ejj (respectively, e,) of the 
Lie algebra C9'4 (respectively, C=+lxZ+l ) of GL(q,  C) (respectively, G); then we have 

and the space Vg) consists of polynomial functions in P(") which are simultaneously 
annihilated by all lowering operators of the form 

Ljj with 1 < i c j < q. (2.1) 
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Let us denote by ( R F ~ I H ,  V g ) )  the restriction of the representation of Rgi to H. The dual 
pair of reductive groups that is needed in this paper is (Sp(2q. B), SO(% + 1, e)) (Howe 
1985, Moshinsky and Quesne 1970). 

Let 
X+l a %+I 

Ljj = zj,- Pjj = zjnzj, 
,=I 8% ,=l 

and 

These operators form a basis for the Lie algebra sp(2q, B) of the group Sp(2q, R). Let F 
denote the Fock space of q~ by 2k + 1 complex variables, as constructed in Leung (1994). 
Then these operators generate a universal envelopping algebra U of differential operators 
which acts on F. 

3. The multiplicity breaking of the branching rule G H 

We now give the procedure for~breaking the multiplicity that appears in the branching rule 
G .L H. Suppose the H-modde C R ~ ) ,  v g ” )  occurs in @)p times (there are many 
formulae that can be used to compute p, see Koike and Terada (1987) for example). Then 
from a consequence of Bumside’s theorem and the theory of dual pairs (Howe 1985). 
there exist p linearly independent elements in U which form a basis for the vector space 
Homx(Vg”, V g ) )  of all intertwining operators from V$ to Vi:). If h z  is the highest 
weight vector of Vi:), then one can choose p elements PI,.  . . . p f i  of U such that p i h z ,  
1 < i < p ,  are linearly independent highest weight vectors of the p copies of the H- 
module equivalent to VE’ which are contained in Vg) .  If W g ) ( m )  denote the vector space 
spanned by p j h s ,  then W g ) ( m )  is equivalent to the subspace of p copies o f  H-module 
Vg‘) in ( R ~ ~ I H ,  Vg)).  In order to break the multiplicity in (RgiIfi,  Vg)), we need to find 
Hermitian operators in U which commute with the operators Lij in (2.1) (but without the 
condition i < j )  and which decompose into distinct one-dimensional eigenspaces. 

To find the operators in U which commute with Ljj, we write Li j ,  1 < i, j < q,  into a 
4 x q matrix [LJ, that is 

L11 ... LI, 

L,I ... L,, 
[U = [ :  , .‘., : ] .  (3.1) 

Similarly, we write P;j (respectively, Dij). 1 < i, j < 4. into a q x 4 matrix [PI 
(respectively, [DI). Also, let [El denote the matrix [-LIT, where T denotes the transpose. 
Notice that [PI and [D] are symmetric matrices. Then we have the following theorem. 

Theorem 3.1. 
of the following matrices: 

In the universal enveloping algebraU, consider the trace of arbitrary products 

(0 [Ll 
(ii) [Pl[Dl and (3.2) 
(iii) [P][E][D]. 
Then these operators generate a subalgebra V of differential operators in U that commute 

with the operators L j j ,  1 < i ,  j < q.  
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Example. We can form the folIowing commuting operator: 

~([Pl[EI[Dl[Ll). 

We call the algebra V an algebra of generalized Casimir operators. Now, let R denote 
the matrix (Q,) and we have the following theorem. 

Theorem 3.3. The differential operators of the form *(Al. . .Ai . . . AT), where Ai = R or 
RT, 1 < i < r ,  r is an integer > 0, generate the same algebra V of commuting differential 
operators as the differential operators defined by (3.2) in theorem 3.1. The adjoint of such 
an operator *(A1 ... A,) is given by &(A,. . .A,). 

The proofs of the above theorems are similar to that for theorem 3.3, proposition 3.5, 
3.7 in h u n g  (1994). From theorem 3.3 above, the adjoint of an operator in V is still in 
V.  If an operator is not Hermitian, then the sum of the operator and its adjoint would be 
Hermitian. Hence, we can always find a Hermitian operator in V .  All we need to do now 
is to pick a Hermitian Casimir operator C in V and use it to decompose the W;$'") space 
into distinct one-dimensional subspaces. Recall that (R$, V$?) occurs in VZ'p times. 
After we apply the Casimir operator C on Wg)cm),  we obtain p distinct eigenvalues. The 
eigenvectors from all one-dimensional subspaces are orthogonal to each other with respect 
to the inner product of the Fock space 3 because the eigenvalues are all distinct. Since 
the Casimir operator C commutes with operators 4, it leaves the space V g )  invariant and 
C(W%)('")) is a subspace in VAy). Therefore, the eigenvectors can be used as labels to 
distinguish the equivalent representations that appear more than once in the branching rule. 
In the next section, we shall illustrate the procedure by an example. 

4. An illustration 

In this section, we are going to demonstrate briefly the procedure outlined above by 
considering the multiplicity breaking of the irreducible representation (1.1) of SO(5, C) in 
the irreducible representation (4,2,0,0,0) of G L(5, C) when we restrict this representation 
to the subgroup SO(5, C). According to a result in Koike and Terada (1987), the irreducible 
representation (1, 1) of SO(5, C) occurs in this restriction twice. 

According to OUT programme, the dual air for this example is (sp(4, R), SO(5, C)). 
Let h,, be the highest weight vector of V$), then it is given by 

h,, = Z l l Z U  - znz21. 

Since the H-module (R!$'), V;*')) occurs in V ~ ~ z o . o m  twice, we need to pick two linearly 
inde endent intertwining operators, I and p z ,  in U(sp(4,R)) that send the H-module 
Vj3' into the GL(5,  C)-module Vc; (' ' ' ' 'I. We want to mention how to choose the two 
linearly independent operators. Our goal is to find elements in U(sp(4, B)) that send Vj, ') 
into the GL(5,  C)-module V$i2*'"*'). In U(sp(4, B)), the raising operators are Paa and 
Lap for a > j3 and the lowering operators are Pep and D,p for 01 < ,9. Therefore, we want 
to combine certain raising and lowering operators in U(sp(4, R)) so that we can raise the 
2-tuple of integers (1. 1) to (4,2,0.0,0). Now, plh,, and p&,, span the vector space 
~ ~ 1 . l ~ ~ 4 . ~ 0 . 0 . 0 ~ ~  

max 
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In order to break the multiplicity, we need to pick a Hermitian Casimir operator C in I.' 
and use it to decompose the Wz)(4*2.0.0.0) space into distinct onedimensional subspaces. 
In general, we choose the Casimir operator in an ad hoc manner. However, in practice, 
just a low-degree operator generally suffices, for example, h.(RRTR) or tr(RRT) +tr(RTR), 
where 

(according to theorem 3.3, they are both Hermitian operators). The Casimir operator C 
acting on W(1*')(4,2,0.0.0) max will have two distinct eigenvalues A1 and h2. If the corresponding 
eigenvector for hl is hl and the corresponding eigenvector for A2 is h2, then the eigenvectors 
hl and h2 are orthogonal because C is Hermitian and they can be used as labels to distinguish 
the equivalent representations v$,') in the restriction. 
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